
Bases de données avancées
Chapitre 4 : DatabaseTuning

Avec les slidesde
© Dennis Shasha© Philippe Bonnet

Sarah Cohen-Boulakia
Laboratoire de Recherche en Informatique

Université Paris Sud
http://www.lri.fr/~cohen/BD/BD.html

1
© Dennis Shasha © Philippe Bonnet

2

Database Tuning

Database Tuning is the activity of making
a database application run more quickly.
άaƻǊŜ ǉǳƛŎƪƭȅέ ǳǎǳŀƭƭȅ ƳŜŀƴǎ higher

throughput, though it may mean lower
response time for time-critical

applications.

© Dennis Shasha © Philippe Bonnet

3

Tuning Principles Leitmotifs

ÅThink globally, fix locally (does it matter?)

ÅPartitioning breaks bottlenecks (temporal and
spatial)

ÅStart-up costs are high; running costs are low (disk
transfer, cursors)

ÅBe prepared for trade-offs (indexes and inserts)

© Dennis Shasha © Philippe Bonnet

4

Application Programmer (e.g., Business analyst, Data architect)

Sophisticated
Application
Programmer
(e.g., SAP admin)

DBA,
Tuner

Hardware
[Processor(s), Disk(s), Memory]

Operating System

Concurrency Control
Recovery

Storage Subsystem
Indexes

QueryProcessor

Application

© Dennis Shasha © Philippe Bonnet

5

Part 1 : Index Tuning

ÅIndex issues

ïIndexes may be better or worse than scans

ïMulti-table joins that run on for hours, because
the wrong indexes are defined

ïConcurrency control bottlenecks

ïIndexes that are maintained and never used

© Dennis Shasha © Philippe Bonnet

6

Index Implementations in some
major DBMS (change quickly!)

ÅSQL Server
ïB+-Treedata structure

ïClustered indexes are sparse

ï Indexes maintained as
updates/insertions/deletes
are performed

ÅDB2
ïB+-Tree data structure,

spatial extender for R-tree

ïClustered indexes are dense

ïExplicit command for index
reorganization

ÅOracle
ïB+-tree, hash, bitmap, spatial

extender for R-Tree

ïclustered index

ÅIndex organized table
(unique/clustered)

ÅClusters used when creating
tables.

ÅTimesTen(Main-memory
DBMS)
ïT-tree

© Dennis Shasha © Philippe Bonnet

7

B+-Tree Performance

ÅKey length is important!

ïChoose small key when creating an index

ïKey compression techniques in DBMS

ÅPrefix compression (Oracle 8, mySQL): only store that
part of the key that is needed to distinguish it from its
neighbors: Smi, Smo, Smyfor Smith, Smoot, Smythe.

ÅFront compression (Oracle 5): adjacent keys have their
front portion factored out: Smi, (2)o, (2)y. There are
problems with this approach:
ïProcessor overhead for maintenance

ïLocking Smoot requires locking Smith too.

© Dennis Shasha © Philippe Bonnet

8

Types of Queries

Å Point Query
SELECT balance
FROM accounts
WHERE number = 1023;

// Number is a primary key

Å Multipoint Query
SELECT balance
FROM accounts
WHERE branchnum= 100;

// several matches

Å Range Query
SELECT number
FROM accounts
WHERE balance > 10000
and balance <= 20000;

Å Prefix Match Query
SELECT *
FROM employees
WHERE ƴŀƳŜ Ґ ΨWϝΩ;

© Dennis Shasha © Philippe Bonnet

9

More Types of Queries

Å ExtremalQuery
SELECT *
FROM accounts
WHERE balance =
(select max(balance) from

accounts)

Å Ordering Query
SELECT *
FROM accounts
ORDER BYbalance;

Å Grouping Query
SELECT branchnum,
avg(balance)
FROM accounts
GROUP BY branchnum;

Å Join Query
SELECT distinct branch.adresse
FROM accounts, branch
WHERE
accounts.branchnum=

branch.number
and accounts.balance> 10000;

© Dennis Shasha © Philippe Bonnet

10

ÅIŀǎƘ ƛƴŘŜȄŜǎ ŘƻƴΩǘ ƘŜƭǇ
when evaluating range
queries

ÅHash index outperforms
B-tree on point queries

Range Queries

0

0.1

0.2

0.3

0.4

0.5

B-Tree Hash index Bitmap index

T
h

ro
u

g
h

p
u

t
(q

u
e
ri

e
s
/s

e
c
)

B-Tree, Hash Tree, Bitmap

Point Queries

0

10

20

30

40

50

60

B-Tree hash index

T
h

ro
u

g
h

p
u

t(
q

u
e
ri

e
s
/s

e
c
)

© Dennis Shasha © Philippe Bonnet

11

Clustered Index

ÅMultipoint query that
returns 100 records out
of 1000 000 (0,01%).

ÅClustered index is twice
as fast as non-clustered
index and orders of
magnitude faster than a
scan.

0

0.2

0.4

0.6

0.8

1

SQLServer Oracle DB2

T
h

ro
u

g
h

p
u

t
ra

ti
o

clustered nonclustered no index

© Dennis Shasha © Philippe Bonnet

12

Covering Index - defined

ÅSelect name from employee where
ŘŜǇŀǊǘƳŜƴǘ Ґ άƳŀǊƪŜǘƛƴƎέ

ÅGood covering index would be on
(department, name)

ÅIndex on (name, department) not useful.

ÅIndex on department alone moderately useful.

© Dennis Shasha © Philippe Bonnet

13

Covering Index - impact

ÅCovering index performs
better than clustering index
when first attributes of
index are in the where
clause and last attributes in
the select.

ÅWhen attributes are not in
order then performance is
much worse.0

10

20

30

40

50

60

70

SQLServer

T
h

ro
u

g
h

p
u

t
(q

u
e

ri
e

s
/s

e
c

)

covering

covering - not
ordered

non clustering

clustering

© Dennis Shasha © Philippe Bonnet

14

Scan Can Sometimes Win

Å IBM DB2 v7.1 on Windows
2000

ÅRange Query

Å If a query retrieves 10% of
the records or more,
scanning is often better
than using a non-clustering
non-covering index.
Crossover > 10%when
records are large or table is
fragmented on disk ςscan
cost increases.

0 5 10 15 20 25

% of selected records

T
h

ro
u

g
h

p
u

t
(q

u
e

ri
e

s
/s

e
c

)

scan

non clustering

© Dennis Shasha © Philippe Bonnet

15

Part 2 : Schema tuning

ÅNormalisation& Denormalisation

ÅVertical partitioning

16

Denormalization

ÅQuery: find all lineitems
whose supplier is in Europe.

ÅWith a normalized schema
this query is a 4-way join.

Å If we denormalizelineitem
and add the name of the
region for each lineitem
(foreign key
denormalization)
throughput improves 30%

0

0.0005

0.001

0.0015

0.002

normalized denormalized

T
h

ro
u

g
h

p
u

t
(Q

u
e
ri

e
s
/s

e
c
)

© Dennis Shasha © Philippe Bonnet

17

Vertical Partitioning

ÅConsider account(id, balance, homeaddress)

Å²ƘŜƴ ƳƛƎƘǘ ƛǘ ōŜ ŀ ƎƻƻŘ ƛŘŜŀ ǘƻ Řƻ ŀ άǾŜǊǘƛŎŀƭ
ǇŀǊǘƛǘƛƻƴƛƴƎέ ƛƴǘƻ ŀŎŎƻǳƴǘмόƛŘΣōŀƭŀƴŎŜύ ŀƴŘ
account2(id,homeaddress)?

ÅJoin vs. size.

© Dennis Shasha © Philippe Bonnet

18

Vertical Partitioning

ÅWhich design is better
depends on the query
pattern:
ïThe application that sends a

monthly statement is the
principal user of the address
of the owner of an account

ïThe balance is updated or
examined several times a day.

ÅThe second schema might
be better because the
relation (account_ID,
balance) can be made
smaller:
ïMore account_ID, balance

pairs fit in memory, thus
increasing the hit ratio

ïA scan performs better
because there are fewer
pages.

© Dennis Shasha © Philippe Bonnet

19

Tuning Normalization

ÅA single normalized relation XYZ is better than two
normalized relations XY and XZ if the single relation
design allows queries to access X, Y and Z together
without requiring a join.

ÅThe two-relation design is better iff:

ïUsers access tend to partition between the two sets Y and
Z most of the time

ïAttributes Y or Z have large values

© Dennis Shasha © Philippe Bonnet

Part 3 : QueryTuning

ÅQueryoptimisation

ĄEXPLAIN ANALYSE

ÅQueryrewriting

20© Dennis Shasha © Philippe Bonnet

21

Query Tuning
SELECT s.RESTAURANT_NAME, t.TABLE_SEATING, to_char(t.DATE_TIME,'Dy, Mon FMDD') AS THEDATE, to_char(t.DATE_TIME,'HH:MI PM')
AS THETIME,to_char(t.DISCOUNT,'99') || '%' AS AMOUNTVALUE,t.TABLE_ID, s.SUPPLIER_ID, t.DATE_TIME,
to_number(to_char(t.DATE_TIME,'SSSSS')) AS SORTTIME

FROM TABLES_AVAILABLE t, SUPPLIER_INFO s,

(SELECT s.SUPPLIER_ID, t.TABLE_SEATING, t.DATE_TIME, max(t.DISCOUNT) AMOUNT, t.OFFER_TYPE
FROM TABLES_AVAILABLE t, SUPPLIER_INFO
WHERE t.SUPPLIER_ID = s.SUPPLIER_ID

and (TO_CHAR(t.DATE_TIME, 'MM/DD/YYYY') !=
TO_CHAR(sysdate, 'MM/DD/YYYY') OR TO_NUMBER(TO_CHAR(sysdate, 'SSSSS')) < s.NOTIFICATION_TIME - s.TZ_OFFSET)

and t.NUM_OFFERS > 0
and t.DATE_TIME > SYSDATE
and s.CITY = 'SF'
and t.TABLE_SEATING = '2'
and t.DATE_TIME between sysdate and (sysdate + 7)
and to_number(to_char(t.DATE_TIME, 'SSSSS')) between 39600 and 82800
ŀƴŘ ǘΦhCC9wψ¢¸t9 Ґ ϥ5ƛǎŎƻǳƴǘΨ

GROUP BY
s.SUPPLIER_ID, t.TABLE_SEATING, t.DATE_TIME, t.OFFER_TYP

) u

WHERE
t.SUPPLIER_ID = s.SUPPLIER_ID

and u.SUPPLIER_ID = s.SUPPLIER_ID
and t.SUPPLIER_ID = u.SUPPLIER_ID
and t.TABLE_SEATING = u.TABLE_SEATING
and t.DATE_TIME = u.DATE_TIME
and t.DISCOUNT = u.AMOUNT
and t.OFFER_TYPE = u.OFFER_TYPE
and (TO_CHAR(t.DATE_TIME, 'MM/DD/YYYY') !=

TO_CHAR(sysdate, 'MM/DD/YYYY') OR
TO_NUMBER(TO_CHAR(sysdate, 'SSSSS')) < s.NOTIFICATION_TIME - s.TZ_OFFSET)

and t.NUM_OFFERS >
and t.DATE_TIME > SYSDATE and s.CITY = 'SF' and t.TABLE_SEATING = '2' and t.DATE_TIME between sysdate and (sysdate + 7) and

to_number(to_char(t.DATE_TIME, 'SSSSS')) between 39600 and 82800 and t.OFFER_TYPE = 'Discount'

ORDER BY AMOUNTVALUE DESC, t.TABLE_SEATING ASC, upper(s.RESTAURANT_NAME) ASC,SORTTIME ASC, t.DATE_TIME ASC

9ȄŜŎǳǘƛƻƴ ƛǎ ǘƻƻ ǎƭƻǿ Χ

1) How is this query executed?
2) How to make it run faster?

Ą EXPLAIN

© Dennis Shasha © Philippe Bonnet

22

Query Execution Plan

Output of the Oracle EXPLAIN tool

Physical Operators

Access Method Cost Model

Execution Plan

--

0 SELECT STATEMENT Optimizer=CHOOSE (Cost=165 Card=1 Bytes=106)

1 0 SORT (ORDER BY) (Cost=165 Card=1 Bytes=106)

2 1 NESTED LOOPS (Cost=164 Card=1 Bytes=106)

3 2 NESTED LOOPS (Cost=155 Card=1 Bytes=83)

4 3 TABLE ACCESS (FULL) OF 'TABLES_AVAILABLE' (Cost=72 Card=1 Bytes=28)

5 3 VIEW

6 5 SORT (GROUP BY) (Cost=83 Card=1 Bytes=34)

7 6 NESTED LOOPS (Cost=81 Card=1 Bytes=34)

8 7 TABLE ACCESS (FULL) OF 'TABLES_AVAILABLE' (Cost=72 Card=1 Bytes=24)

9 7 TABLE ACCESS (FULL) OF 'SUPPLIER_INFO' (Cost=9 Card=20 Bytes=200)

10 2 TABLE ACCESS (FULL) OF 'SUPPLIER_INFO' (Cost=9 Card=20 Bytes=460)

© Dennis Shasha © Philippe Bonnet

23

Physical Operators

ÅQuery Blocks

ïOne block per SELECT-
FROM-WHERE-
GROUPBY-ORDERBY

ïVIEW isolate blocks
optimized separately

ÅShape of the
execution tree (right-
ŘŜŜǇΣ ōǳǎƘȅΣ Χύ

ÅJoin order

ÅAlgorithms

ïSort

ïAggregates

ïSelect

ïProject

ïJoin
ÅNested Loop

ÅSort-Merge

ÅHash-Join

© Dennis Shasha © Philippe Bonnet

24

Access Method

ÅTable Scan (full scan)

ÅIndex Scan

ïFind Index(es) matching expression in query

ïExtract constant or range from query

ïIndex Search

© Dennis Shasha © Philippe Bonnet

25

Cost Model

ωCost metric
ςCost = w1*IO_COST

+w2*CPU_COST

ςWe consider w2 = 0

ωCost formula for each
operator
ςDepends on operator algorithm

ςDepends on input size (nb
tuples, nb pages)

ωBecause operators are
composed. Need to estimate
size of operator output.

Rin

Rin_2

Rin_1

Rout

Rout

s

-.

© Dennis Shasha © Philippe Bonnet

26

Query Representation

ÅQuery Tree ÅQuery graph

Reserves Sailors

sid=sid

bid=100

sname
(On-the-fly)

rating > 5
(Scan;
write to
temp T1)

(Scan;
write to
temp T2)

(Sort-Merge Join)

Reserves

Sailors

rating > 5

bid=100

sid=sid

© Dennis Shasha © Philippe Bonnet

27

Query Representation

ÅA query is decomposed into blocks

ïAggregation

ïOrder by

ïSPJ

ïRelations

ÅEach block is represented and optimized
independently

© Dennis Shasha © Philippe Bonnet

