
Bases de données avancées
Chapitre 4 : Database Tuning

Avec les slides de
© Dennis Shasha © Philippe Bonnet

Sarah Cohen-Boulakia
Laboratoire de Recherche en Informatique

Université Paris Sud
http://www.lri.fr/~cohen/BD/BD.html

1
© Dennis Shasha © Philippe Bonnet

2

Database Tuning

Database Tuning is the activity of making
a database application run more quickly.

“More quickly” usually means higher
throughput, though it may mean lower

response time for time-critical
applications.

© Dennis Shasha © Philippe Bonnet

3

Tuning Principles Leitmotifs

• Think globally, fix locally (does it matter?)

• Partitioning breaks bottlenecks (temporal and
spatial)

• Start-up costs are high; running costs are low (disk
transfer, cursors)

• Be prepared for trade-offs (indexes and inserts)

© Dennis Shasha © Philippe Bonnet

4

Application Programmer (e.g., Business analyst, Data architect)

Sophisticated
Application

Programmer
(e.g., SAP admin)

DBA,
Tuner

Hardware
[Processor(s), Disk(s), Memory]

Operating System

Concurrency Control
Recovery

Storage Subsystem
Indexes

Query Processor

Application

© Dennis Shasha © Philippe Bonnet

5

Part 1 : Index Tuning

• Index issues

– Indexes may be better or worse than scans

– Multi-table joins that run on for hours, because
the wrong indexes are defined

– Concurrency control bottlenecks

– Indexes that are maintained and never used

© Dennis Shasha © Philippe Bonnet

6

Index Implementations in some
major DBMS (change quickly!)

• SQL Server
– B+-Tree data structure

– Clustered indexes are sparse

– Indexes maintained as
updates/insertions/deletes
are performed

• DB2
– B+-Tree data structure,

spatial extender for R-tree

– Clustered indexes are dense

– Explicit command for index
reorganization

• Oracle
– B+-tree, hash, bitmap, spatial

extender for R-Tree

– clustered index

• Index organized table
(unique/clustered)

• Clusters used when creating
tables.

• TimesTen (Main-memory
DBMS)
– T-tree

© Dennis Shasha © Philippe Bonnet

7

B+-Tree Performance

• Key length is important!

– Choose small key when creating an index

– Key compression techniques in DBMS

• Prefix compression (Oracle 8, mySQL): only store that
part of the key that is needed to distinguish it from its
neighbors: Smi, Smo, Smy for Smith, Smoot, Smythe.

• Front compression (Oracle 5): adjacent keys have their
front portion factored out: Smi, (2)o, (2)y. There are
problems with this approach:
– Processor overhead for maintenance

– Locking Smoot requires locking Smith too.

© Dennis Shasha © Philippe Bonnet

8

Types of Queries

• Point Query
SELECT balance
FROM accounts
WHERE number = 1023;

// Number is a primary key

• Multipoint Query
SELECT balance
FROM accounts
WHERE branchnum = 100;

// several matches

• Range Query
SELECT number
FROM accounts
WHERE balance > 10000
and balance <= 20000;

• Prefix Match Query
SELECT *
FROM employees
WHERE name = ‘J*’ ;

© Dennis Shasha © Philippe Bonnet

9

More Types of Queries

• Extremal Query
SELECT *
FROM accounts
WHERE balance =
(select max(balance) from

accounts)

• Ordering Query
SELECT *
FROM accounts
ORDER BY balance;

• Grouping Query
SELECT branchnum,
avg(balance)
FROM accounts
GROUP BY branchnum;

• Join Query
SELECT distinct branch.adresse
FROM accounts, branch
WHERE
accounts.branchnum =

branch.number
and accounts.balance > 10000;

© Dennis Shasha © Philippe Bonnet

10

• Hash indexes don’t help
when evaluating range
queries

• Hash index outperforms
B-tree on point queries

Range Queries

0

0.1

0.2

0.3

0.4

0.5

B-Tree Hash index Bitmap index

T
h

ro
u

g
h

p
u

t
(q

u
e
ri

e
s
/s

e
c
)

B-Tree, Hash Tree, Bitmap

Point Queries

0

10

20

30

40

50

60

B-Tree hash index

T
h

ro
u

g
h

p
u

t(
q

u
e
ri

e
s
/s

e
c
)

© Dennis Shasha © Philippe Bonnet

11

Clustered Index

• Multipoint query that
returns 100 records out
of 1000 000 (0,01%).

• Clustered index is twice
as fast as non-clustered
index and orders of
magnitude faster than a
scan.

0

0.2

0.4

0.6

0.8

1

SQLServer Oracle DB2

T
h

ro
u

g
h

p
u

t
ra

ti
o

clustered nonclustered no index

© Dennis Shasha © Philippe Bonnet

12

Covering Index - defined

• Select name from employee where
department = “marketing”

• Good covering index would be on
(department, name)

• Index on (name, department) not useful.

• Index on department alone moderately useful.

© Dennis Shasha © Philippe Bonnet

13

Covering Index - impact

• Covering index performs
better than clustering index
when first attributes of
index are in the where
clause and last attributes in
the select.

• When attributes are not in
order then performance is
much worse.0

10

20

30

40

50

60

70

SQLServer

T
h

ro
u

g
h

p
u

t
(q

u
e

ri
e

s
/s

e
c

)

covering

covering - not
ordered

non clustering

clustering

© Dennis Shasha © Philippe Bonnet

14

Scan Can Sometimes Win

• IBM DB2 v7.1 on Windows
2000

• Range Query

• If a query retrieves 10% of
the records or more,
scanning is often better
than using a non-clustering
non-covering index.
Crossover > 10% when
records are large or table is
fragmented on disk – scan
cost increases.

0 5 10 15 20 25

% of selected records

T
h

ro
u

g
h

p
u

t
(q

u
e

ri
e

s
/s

e
c

)

scan

non clustering

© Dennis Shasha © Philippe Bonnet

15

Part 2 : Schema tuning

• Normalisation & Denormalisation

• Vertical partitioning

16

Denormalization

• Query: find all lineitems
whose supplier is in Europe.

• With a normalized schema
this query is a 4-way join.

• If we denormalize lineitem
and add the name of the
region for each lineitem
(foreign key
denormalization)
throughput improves 30%

0

0.0005

0.001

0.0015

0.002

normalized denormalized

T
h

ro
u

g
h

p
u

t
(Q

u
e
ri

e
s
/s

e
c
)

© Dennis Shasha © Philippe Bonnet

17

Vertical Partitioning

• Consider account(id, balance, homeaddress)

• When might it be a good idea to do a “vertical
partitioning” into account1(id,balance) and
account2(id,homeaddress)?

• Join vs. size.

© Dennis Shasha © Philippe Bonnet

18

Vertical Partitioning

• Which design is better
depends on the query
pattern:
– The application that sends a

monthly statement is the
principal user of the address
of the owner of an account

– The balance is updated or
examined several times a day.

• The second schema might
be better because the
relation (account_ID,
balance) can be made
smaller:
– More account_ID, balance

pairs fit in memory, thus
increasing the hit ratio

– A scan performs better
because there are fewer
pages.

© Dennis Shasha © Philippe Bonnet

19

Tuning Normalization

• A single normalized relation XYZ is better than two
normalized relations XY and XZ if the single relation
design allows queries to access X, Y and Z together
without requiring a join.

• The two-relation design is better iff:

– Users access tend to partition between the two sets Y and
Z most of the time

– Attributes Y or Z have large values

© Dennis Shasha © Philippe Bonnet

Part 3 : Query Tuning

• Query optimisation

→EXPLAIN ANALYSE

• Query rewriting

20© Dennis Shasha © Philippe Bonnet

21

Query Tuning
SELECT s.RESTAURANT_NAME, t.TABLE_SEATING, to_char(t.DATE_TIME,'Dy, Mon FMDD') AS THEDATE, to_char(t.DATE_TIME,'HH:MI PM')
AS THETIME,to_char(t.DISCOUNT,'99') || '%' AS AMOUNTVALUE,t.TABLE_ID, s.SUPPLIER_ID, t.DATE_TIME,
to_number(to_char(t.DATE_TIME,'SSSSS')) AS SORTTIME

FROM TABLES_AVAILABLE t, SUPPLIER_INFO s,

(SELECT s.SUPPLIER_ID, t.TABLE_SEATING, t.DATE_TIME, max(t.DISCOUNT) AMOUNT, t.OFFER_TYPE
FROM TABLES_AVAILABLE t, SUPPLIER_INFO
WHERE t.SUPPLIER_ID = s.SUPPLIER_ID

and (TO_CHAR(t.DATE_TIME, 'MM/DD/YYYY') !=
TO_CHAR(sysdate, 'MM/DD/YYYY') OR TO_NUMBER(TO_CHAR(sysdate, 'SSSSS')) < s.NOTIFICATION_TIME - s.TZ_OFFSET)

and t.NUM_OFFERS > 0
and t.DATE_TIME > SYSDATE
and s.CITY = 'SF'
and t.TABLE_SEATING = '2'
and t.DATE_TIME between sysdate and (sysdate + 7)
and to_number(to_char(t.DATE_TIME, 'SSSSS')) between 39600 and 82800
and t.OFFER_TYPE = 'Discount‘

GROUP BY
s.SUPPLIER_ID, t.TABLE_SEATING, t.DATE_TIME, t.OFFER_TYP

) u

WHERE
t.SUPPLIER_ID = s.SUPPLIER_ID

and u.SUPPLIER_ID = s.SUPPLIER_ID
and t.SUPPLIER_ID = u.SUPPLIER_ID
and t.TABLE_SEATING = u.TABLE_SEATING
and t.DATE_TIME = u.DATE_TIME
and t.DISCOUNT = u.AMOUNT
and t.OFFER_TYPE = u.OFFER_TYPE
and (TO_CHAR(t.DATE_TIME, 'MM/DD/YYYY') !=

TO_CHAR(sysdate, 'MM/DD/YYYY') OR
TO_NUMBER(TO_CHAR(sysdate, 'SSSSS')) < s.NOTIFICATION_TIME - s.TZ_OFFSET)

and t.NUM_OFFERS >
and t.DATE_TIME > SYSDATE and s.CITY = 'SF' and t.TABLE_SEATING = '2' and t.DATE_TIME between sysdate and (sysdate + 7) and

to_number(to_char(t.DATE_TIME, 'SSSSS')) between 39600 and 82800 and t.OFFER_TYPE = 'Discount'

ORDER BY AMOUNTVALUE DESC, t.TABLE_SEATING ASC, upper(s.RESTAURANT_NAME) ASC,SORTTIME ASC, t.DATE_TIME ASC

Execution is too slow …

1) How is this query executed?
2) How to make it run faster?

→ EXPLAIN

© Dennis Shasha © Philippe Bonnet

22

Query Execution Plan

Output of the Oracle EXPLAIN tool

Physical Operators

Access Method Cost Model

Execution Plan

--

0 SELECT STATEMENT Optimizer=CHOOSE (Cost=165 Card=1 Bytes=106)

1 0 SORT (ORDER BY) (Cost=165 Card=1 Bytes=106)

2 1 NESTED LOOPS (Cost=164 Card=1 Bytes=106)

3 2 NESTED LOOPS (Cost=155 Card=1 Bytes=83)

4 3 TABLE ACCESS (FULL) OF 'TABLES_AVAILABLE' (Cost=72 Card=1 Bytes=28)

5 3 VIEW

6 5 SORT (GROUP BY) (Cost=83 Card=1 Bytes=34)

7 6 NESTED LOOPS (Cost=81 Card=1 Bytes=34)

8 7 TABLE ACCESS (FULL) OF 'TABLES_AVAILABLE' (Cost=72 Card=1 Bytes=24)

9 7 TABLE ACCESS (FULL) OF 'SUPPLIER_INFO' (Cost=9 Card=20 Bytes=200)

10 2 TABLE ACCESS (FULL) OF 'SUPPLIER_INFO' (Cost=9 Card=20 Bytes=460)

© Dennis Shasha © Philippe Bonnet

23

Physical Operators

• Query Blocks

– One block per SELECT-
FROM-WHERE-
GROUPBY-ORDERBY

– VIEW isolate blocks
optimized separately

• Shape of the
execution tree (right-
deep, bushy, …)

• Join order

• Algorithms

– Sort

– Aggregates

– Select

– Project

– Join
• Nested Loop

• Sort-Merge

• Hash-Join

© Dennis Shasha © Philippe Bonnet

24

Access Method

• Table Scan (full scan)

• Index Scan

– Find Index(es) matching expression in query

– Extract constant or range from query

– Index Search

© Dennis Shasha © Philippe Bonnet

25

Cost Model

• Cost metric
– Cost = w1*IO_COST

+w2*CPU_COST

– We consider w2 = 0

• Cost formula for each
operator
– Depends on operator algorithm

– Depends on input size (nb
tuples, nb pages)

• Because operators are
composed. Need to estimate
size of operator output.

Rin

Rin_2

Rin_1

Rout

Rout





© Dennis Shasha © Philippe Bonnet

26

Query Representation

• Query Tree • Query graph

Reserves Sailors

sid=sid

bid=100

sname
(On-the-fly)

rating > 5
(Scan;
write to
temp T1)

(Scan;
write to
temp T2)

(Sort-Merge Join)

Reserves

Sailors

rating > 5

bid=100

sid=sid

© Dennis Shasha © Philippe Bonnet

27

Query Representation

• A query is decomposed into blocks

– Aggregation

– Order by

– SPJ

– Relations

• Each block is represented and optimized
independently

© Dennis Shasha © Philippe Bonnet

28

Overview of Query Optimization

• Ideally: Want to find best plan.

• Practically: Avoid worst plans!

• Two main issues:

– For a given query, what is the search space?

– How is the search implemented?

• Algorithm to search plan space for cheapest (estimated) plan.

• How is the cost of a plan estimated?

© Dennis Shasha © Philippe Bonnet

29

Search Algorithm
Naïve1

– Enumerate all possible plans (o(n!))

– Pick the best plan

– Intractable

Naïve 2

– Order of relations fixed by the query

– Selections are pushed
• No further transformations

– Single multiway nested loop join for each block
• Index used if they exist

• Star tree

© Dennis Shasha © Philippe Bonnet

30

Search Algorithm
Semi-Naïve

– Order of relations fixed by the query

– Selections are pushed
• No further transformations

– Nested loop vs. sort merge join
– Left-deep tree

Implementation problems:
• expressions reference columns of tables
• expressions must be adapted to the position of tables

in the tree (including interm. tables)

© Dennis Shasha © Philippe Bonnet

Part 3 : Query Tuning

• Query optimisation

→EXPLAIN, ANALYSE

• Query rewriting

31© Dennis Shasha © Philippe Bonnet

32

Query Rewriting

The first tuning method to try is the one
whose effects are purely local

– Adding an index, changing the schema, modifying
transactions have global effects that are
potentially harmful

– Query rewriting only impacts a particular query

© Dennis Shasha © Philippe Bonnet

33

Query Rewriting Techniques

• Index usage

• DISTINCTs elimination

• (Correlated) subqueries

• Use of temporaries (no query in the FROM
clause!)

• Join conditions

• Use of Having

• Use of views

• Materialized views.

© Dennis Shasha © Philippe Bonnet

34

Running Example

• Employee(ssnum, name, manager, dept, salary,
numfriends)
– Clustering index on ssnum

– Non clustering indexes (i) on name and (ii) on dept

– Ssnum determines all the other attributes

• Student(ssnum, name, degree_sought, year)
– Clustering index on ssnum

– Non clustering index on name

– Ssnum determines all the other attributes

• Tech(dept, manager, location)
– Clustering index on dept; dept is primary key.

© Dennis Shasha © Philippe Bonnet

35

Index Usage

• Many query optimizers will not use indexes in
the presence of:

– Arithmetic expressions

WHERE salary/12 >= 4000;

– Substring expressions

SELECT * FROM employee
WHERE SUBSTR(name, 1, 1) = ‘G’;

– Numerical comparisons of fields with different types

– Comparison with NULL.

© Dennis Shasha © Philippe Bonnet

36

Eliminate unneeded DISTINCTs

• Query: Find employees who work in the information
systems department. There should be no duplicates.

SELECT distinct ssnum
FROM employee
WHERE dept = ‘information systems’

• Distinct needed ?

© Dennis Shasha © Philippe Bonnet

37

Eliminate unneeded DISTINCTs

• Query: Find social security numbers of
employees in the technical departments.
There should be no duplicates.

SELECT DISTINCT ssnum
FROM employee, tech
WHERE employee.dept = tech.dept

• Is DISTINCT needed?

© Dennis Shasha © Philippe Bonnet

38© Dennis Shasha © Philippe Bonnet

39

Reaching

• The relationship among DISTINCT, keys and joins
can be generalized:

– Call a table T privileged if the fields returned by the
SELECT contain a key of T

– Let R be an unprivileged table. Suppose that R is joined
on equality by its key field to some other table S, then
we say R reaches S.

– Now, define reaches to be transitive. So, if R1 reaches
R2 and R2 reaches R3 then say that R1 reaches R3.

© Dennis Shasha © Philippe Bonnet

40

Reaches: Main Theorem

• There will be no duplicates among the records
returned by a selection, even in the absence
of DISTINCT if one of the two following
conditions hold:

– Every table mentioned in the FROM clause is
privileged

– Every unprivileged table reaches at least one
privileged table.

© Dennis Shasha © Philippe Bonnet

41

Reaches: Example 1

SELECT ?DISTINCT? ssnum
FROM employee, tech
WHERE employee.manager = tech.manager

© Dennis Shasha © Philippe Bonnet

42

Reaches: Example 2
SELECT ?DISTINCT? ssnum, tech.dept
FROM employee, tech
WHERE employee.manager = tech.manager

© Dennis Shasha © Philippe Bonnet

43

Reaches: Example 3

SELECT student.ssnum
FROM student, employee, tech
WHERE student.name = employee.name

AND employee.dept = tech.dept;

© Dennis Shasha © Philippe Bonnet

44

Rewriting of Uncorrelated
Subqueries without Aggregates

1. Combine the
arguments of the
two FROM clauses

2. AND together the
where clauses,
replacing in by =

3. Retain the SELECT
clause from the
outer block

SELECT ssnum

FROM employee
WHERE dept in (select dept
from tech)

becomes

SELECT ssnum

FROM employee, tech
WHERE employee.dept =

tech.dept

NB: one dept per employee
(possible iff “in” meant “=“)

© Dennis Shasha © Philippe Bonnet

45

Abuse of Temporaries

• Query: Find all information department
employees with their locations who earn at least
$10,000.
– INSERT INTO temp

SELECT *
FROM employee
WHERE salary >= 10000

– SELECT ssnum, location
FROM temp
WHERE temp.dept = ‘information systems’

Or same idea with temp in the FROM clause

• Selections should have been done in reverse
order. Temporary relation blinded the optimizer.

46

Join Conditions

• It is a good idea to express join conditions
on clustering indexes.

– No sorting for sort-merge.

– Speed up for multipoint access using an
indexed nested loop.

• It is a good idea to express join conditions
on numerical attributes rather than on
string attributes.

© Dennis Shasha © Philippe Bonnet

47

Use of Having

• Don’t use HAVING when WHERE
is enough!
– SELECT avg(salary) as avgsalary,

dept
FROM employee
GROUP BY dept
HAVING dept = ‘information systems’;

– SELECT avg(salary) as avgsalary,
dept

FROM employee
WHERE dept= ‘information systems’
GROUP BY dept;

• Having should be
reserved for aggregate
properties of the
groups.
– SELECT avg(salary) as

avgsalary, dept
FROM employee
GROUP BY dept
HAVING count(ssnum) > 100;

© Dennis Shasha © Philippe Bonnet

48

Tuning Queries and Views
(Conclusion)

• If a query runs slower than expected, check if an index needs to
be re-built or if statistics are too old (→ ANALYSE).

• Sometimes, the DBMS may not be executing the plan you had
in mind. Common areas of weakness:
– Selections involving null values
– Selections involving arithmetic or string expressions
– Selections involving OR conditions
– Lack of evaluation features like index-only strategies or certain join

methods or poor size estimation

• Check the plan that is being used! Then adjust the choice of
indexes or rewrite the query/view

→EXPLAIN
→EXPLAIN ANALYSE

© Dennis Shasha © Philippe Bonnet

