S PARIS

Basesidel donheesiavancees
Chapttre 4: DatabaseTumning

Avec/lesslidesde
© DenniisShasha® Philippe Bonnet

Sarah CoheiBoulakia
Laboratoire de Recherche en Informatique

Université Paris Sud
http://www.lri.fr/~cohen/BD/BD.html

© Dennis Shasha © Philippe Bonnet

UNIVERSITE

S0 Databaseriunipg

Database Tuning Is the activity of making
a database application run more quickly.
Gdaz2NB |jdza O] f &igherdza
throughput, though it may mean lower
response time for timeeritical
applications.

© Dennis Shasha © Philippe Bonnet

UNIVERSITE

s> Tuning Rrincipled eitmotifs

A Think globally, fix locally (does it matter?)

A Partitioning breaks bottlenecks (temporal and
spatial)

A Startup costs are highrunning costs are low (dis
transfer, cursors)

A Be prepared fotrade-offs (indexes and inserts)

© Dennis Shasha © Philippe Bonnet

- UNIVERSITE

S

—

Sophisticate
Application’
Programmer
(e.g., SAP admin)

DBA,_J
Tuner

Application Programmeg.g., Business analyst, Data architect)

S PARIS (-

Application

QueryProcessor

Indexes Storage Subsystem

Recovery

Concurrency Contr

7

A

Operating System

A 2

Hardware
[Processor(s), Disk(s), Memory]

© Dennis Shasha © Philippe Bonnet

UNIVERSITE

S0 Part 1 ::|ngexriiumng

A Index issues
I Indexes may be better or worse than scans

I Multi-table joins that run on for hours, because
the wrong indexes-areldefined

I Concurrency control bottlenecks
I Indexes that arenaintained antdmevenused

© Dennis Shasha © Philippe Bonnet

UNIVERSITE

> PARIS Index Implementations inssome
major DBWIS ((change.qguicKly!')

A SQL Server A Oracle
I B+Treedata structure i- B+tree, hash, bitmap, spatial
I Clustered indexes are sparse extender for RTree
T Indexes maintained as i clustered index

updates/insertions/deletes

A Index organized table
are performed

(unique/clustered)

A DB2 A Clusters used when creating
I B+Treedata structure, tables.

spatial extender for Rree A TimesTer{Main-memory
I Clustered indexes are dense DBMS)

I Explicit command for index .
reorganization - T-tree

© Dennis Shasha © Philippe Bonnet

UNIVERSITE

PARIS
SUD B+ Tree IRefformance

A Key lengths important!
I Choosesmalll keywhen creating an index

I Key compression techniques in DBMS

APrefix compression (Oracler@ySQ): only store that
part of the key that is needed to distinguish it from its
neighbors:Smj Smq Smyfor Smith, SmootSmythe

AFront compression (Oracle 5): adjacent keys have their
front portion factored out:Smj (2)o, (2)y. There are
problems with this approach:

I Processor overhead for maintenance
I Locking Smoot requires locking Smith too.

© Dennis Shasha © Philippe Bonnet

UNIVERSITE

P RIS TypesofiiQueries

A Point Query A RangeQuery

SELECT balance SELECT number
FROM accounts FROM accounts
WHERRBumber =11023 WHERBalance:->110000

and balance<<=20000
// Number is a primary key P

o A Prefix MatchQuevy
A Multipeint Query SELECT *

SELECT balance FROM employees
FROM accounts WHERB/ahn¥=S* T WWj

WHERBranchnum= 100

// several matches
© Dennis Shasha © Philippe Bonnet

UNIVERSITE

P EARIS More TypescoitQueres

A ExtremalQuery A Grouping@Query
SELECT * SELEOdranchnum

FROM accounts avgbalance)
FROM accounts
WHERE balance =
(selectmax(balance) from GROUR:Bhranchnum

accounts :
) A Join Queny
SELECT distinmtanch.adresse
A Ordering Query FROM accounts, branch
" WHERE
SELECT
accountsthranchnuns
FROM accounts branch.murmniber
ORDER Bialance; andaccounts.balance 10000:

© Dennis Shasha © Philippe Bonnet 9

S PAR S

S B-Tree, Hash ke iBitmpap

Range Queries A I I é K 7\ y R é E S é

when evaluating range

gueries
B-Tree Hash index Bitmap index A HaSh Index OUtperfOrmS

o
o

N
IS

o
w

o
N

o
=

Throughput (queries/sec)

o

Point Queries B-tree on point queries

)
(@)

a
o

N
o

30
20

Throughput(queries/sec)

=
o O

(-

B-Tree hash index

© Dennis Shasha © Philippe Bonnet 10

S5 Clustered index

A Multipeint gquery that
returns 100 records out

of 1000 000 (0,01%).

MW clustered O nonclustered W no index

[EEN

o
©

A Clustered index is twice
as fast as noitlustered
Index and orders of

- magnitude faster than a

SQLServer Oracle DB2

scan.

o
o

o
SN
]

Throughput ratio

o
N

o

© Dennis Shasha © Philippe Bonnet 11

UNIVERSITE

S Coveting tndex defined

A Select name from employee where
RSLI NIGYSYd I aYlF NJSG?
A Good covering index would be on
(department, name)
A Index on (name, department) not useful.

A Index on department alone moderately useful.

© Dennis Shasha © Philippe Bonnet 12

§F’”/'f57”§ Coveringl hndex impact

A Covering index performs

better than clustering index
when first attributes of

-~
o

0 m covering index are in thevhere
% 8 covering - not clauseand last attributes in
ordered the select

o
1

mnon clustering

A When attributes are not in
order then performance is
much worse.

o
1

@ clustering

P N WO B 01 O
o

o
1

Throughput (queries/sec)

o
1

SQLServer

© Dennis Shasha © Philippe Bonnet 13

UNIVERSITE

PARIS
SUWD

ScanGanSometimesiyin

A IBM DB2 v7.1 on Windows
2000

Throughput (queries/sec)

A Range Query

H\

——Sscan

—®-non clustering

_ A If a query retrieves 10% of
’\‘N the records or more,
scanning Is often better

than using a nostlustering

non-covering index.

o

5 10

15

20 25 Crossover > 10%hen

%of selected records records are |arge or table iS

fragmented on disk scan
cost increases.

© Dennis Shasha © Philippe Bonnet 14

UNIVERSITE

P EARIS Part 2 ::sSchemautuining

A Normalisation& Denormalisation
A Verticalpartitioning

15

UNIVERSITE

SUWD

P PARIS

Denemrmalization

A Query: find allineitems
whose supplier is in Europe.

Throughput (Queries/sec)

A With a normalized schema

o
o
o
[§]

0.0015

this query is a4vay join.

0.001 -

0.0005 A

A If wedenormalizdineitem

and add the name of the
region for eacHineitem

o

i

(foreign key

normalized

denormalization)

denormalized

throughput improves 30%

© Dennis Shasha © Philippe Bonnet 16

UNIVERSITE

U5 Vertical IRartitioning

A Consider account(id, balance, homeaddress)

A2 KSYy YAIKUG Ad o6S I 3I:
LI NOAGAZ2YAY3IE Ayaz | (
account2(id,homeaddress)?

A Join vs. size.

© Dennis Shasha © Philippe Bonnet 17

UNIVERSITE

P RIS Vertical Rartitioming

A Which design is better A The second schema might
depends on the query be better because the
pattern: relation (account_ID,

i The application that sends a balance) can be made
monthly statement is the smaller:

p1r:|nhC|paI user (f)f the address i More account_ID, balance
" of the owner_o an account pairs fit in memory, thus
I The balance is updated or increasing the hit ratio

examined several times a day. i A scan performs better

because there are fewer
pages.

© Dennis Shasha © Philippe Bonnet 18

UNIVERSITE

PARIS : : :
SUD Tuning Normalization

A A single normalized relation XYZ is better than two
normalized relations XY and XZ if the single relation
design allows queries to access X, Y and Z together
without requiring a join.

A The tworelation design is better iff:

I Users access tend to partition between the two sets Y and
Z most of the time

I Attributes Y or Z have large values

© Dennis Shasha © Philippe Bonnet 19

S PARIS

Pant 3::Query Tuning

A Query optimisation
A EXPLAIN ANALYSE

A Query rewriting

© Dennis Shasha © Philippe Bonnet

20

UNIVERSITE
S PARIS

SUD Query Tiuning

SELECT s.RESTAURANT_NAME, t. TABLE_SEATING, to_char(t. DATE_TIME,'Dy, Mon FMDD') AS THEDATE, to_char(t. DATE_TIME,'HH:MI PM")
AS THETIME,to_char(t.DISCOUNT,'99") || '%' AS AMOUNTVALUE,t. TABLE_ID, s.SUPPLIER_ID, t. DATE_TIME,
to_number(to_char(t. DATE_TIME,'SSSSS')) AS SORTTIME

FROM TABLES_AVAILABLE t, SUPPLIER_INFO s,

(SELECT s.SUPPLIER_ID, t TABLE_SEATING, t.DATE_TIME, max(t.DISCOUNT) AMOUNT, t.OFFER_TYPE
FROM TABLES_AVAILABLE t, SUPPLIER_INFO
WHERE t.SUPPLIER_ID = s.SUPPLIER_ID
and (TO_CHAR(t.DATE_TIME, 'MM/DD/YYYY') 1=
TO_CHAR(sysdate, 'MM/DD/YYYY') OR TO_NUMBER(TO_CHAR(sysdate, 'SSSSS") < s.NOTIFICAZIQO¥FEEE
and tNUM_OFFERS >0
and t.DATE_TIME > SYSDATE
and s.CITY ='SF'
and t. TABLE_SEATING = '2'
and t.DATE_TIME between sysdate and (sysdate + 7)

and to_number(to_char(t. DATE_TIME, 'SSSSS')) between 39600 and 82800 = & A i x~ i r

YR dohcCcCOwge t9 ' Uds5Aa02dzyiw 9ESOdZU7\2)f A a uz2
GROUP BY

s.SUPPLIER_ID, t. TABLE_SEATING, t.DATE_TIME, t.OFFER_TYP
) 1) How is this query executed”

WHERE

t.SUPPLIER_ID =s.SUPPLIER_ID i 9]

and u.SUPPLIER_ID =s.SUPPLIER_ID 2) How to make It run faSter-

and t.SUPPLIER_ID = u.SUPPLIER_ID
and t. TABLE_SEATING = u.TABLE_SEATING
and t.DATE_TIME = u.DATE_TIME

and t.DISCOUNT = u. AMOUNT
and ttOFFER_TYPE = u.OFFER_TYPE
and (TO_CHAR(t.DATE_TIME, 'MM/DD/YYYY") =

TO_CHAR(sysdate, 'MM/DD/YYYY") OR
TO_NUMBER(TO_CHAR(sysdate, 'SSSSS')) < s.NOTIFICATIQNZTORESET)

and tNUM_OFFERS >

and t.DATE_TIME > SYSDATE and s.CITY ='SF' and t. TABLE_SEATING ='2"' and t.DATE_TIME between sysda® and (sysd
to_number(to_char(t. DATE_TIME, 'SSSSS')) between 39600 and 82800 and t.OFFER_TYPE = 'Discount’

ORDER BY AMOUNTVALUE DESC, t.TABLE_SEATING ASC, upper(s.RESTAURANT_NAME) ASC,SORTTIME ASC, t.DATE_TIME ASC

© Dennis Shasha © Philippe Bonnet

21

S PARIS

Query iExecutiorPRlan

Output of the Oracle EXPLAIN tool

Execution Plan

SELECT STATEMENT Optimizer=CHOOSE (Cost=165 Card=1 Bytes=106)

0 [SORT (ORDERBY) (Cost=165 Card=1 Bytes=106)

NESTED LOOPS (Cost=164 Card=1 Bytes=106) _
[INESTEDIO0RS (Cost=155 Card=1 Bytes=83)

1

2

3 TABLE ACCESS (FULL) OF 'TABLES_AVAILABLE' (Cost=72 Card=1 Bytes=28)

3 VIEW

5 SORT (GROUP BY) (Cost=83 Card=1 Bytes=34)

6 NESTED LOOPS (Cost=81 Card=1 Bytes=34)

7 TABLE ACCESS (FULL) OF 'TABLES_AVAILABLE' (Cost=72 Card=1 Bytes=24)
7

TABLE ACCESS (FULL) OF 'SUPPLIER_IN_ZOO)

10 2 TABLE ACCESS (FULL) OF 'SUPPLIER_INFO' (Cost=9 Card=20 Bytes=460)

Access Method 29
© Dennis Shasha © Philippe Bonnet

0
1
2
3
4
5
6
7
8
9

UNIVERSITE

o RIS Physical@perators

A Query Blocks A Algorithms
i One block per SELECT | Sort
FROMWHERE I Aggregates
GROUPBYRDERBY i Select
I VIEW isolate blocks i Project
optimized separately i Join
A Shape of the A Nested Loop
execution tree (right A SortMerge

RSSLIE 0dzaKeés Adigshoin
A Join order

© Dennis Shasha © Philippe Bonnet

UNIVERSITE

B Access\Methad

A Table Scarfill scar)

A Index Scan
I FInd Index¢s) matching expression in query
I Extract constant or range from query
I Index Search

© Dennis Shasha © Philippe Bonnet

S BARIS CostilVloge!
w Cost metric
¢ Cost =wl1*IO_COST

+w2*CPU_COST
" ¢ We consider w2 =0
wCost formula for each
operator

¢ Depends on operator algorithn

¢ Depends on input sizalf
tuples, nb pages)
wBecause operators are

composed. Need to estimate
size of operator output.

© Dennis Shasha © Philippe Bonnet

25

(UNIVERSITE

SUD

Query IRepresentation

A Query Tree

Tfsname(On-the-fIy)

=<
sid=sid

(Scan; o .
write to bid=100
temp T1) r

Reserves

(Sort-Merge Join)

(Scan;
ng >5 write to

rat

Sailors

© Dennis Shasha © Philippe Bonnet

A Query graph

bid=100

Reserves

sid=sid

temp T2)

Sailors

rating > 5

26

UNIVERSITE
P PARIS
SUD

A A query is decomposed into blocks
I Aggregation
I Order by
i SPJ
I Relations

A Each block is represented and optimized
iIndependently

© Dennis Shasha © Philippe Bonnet

