S PARIS

Bases de données avancées
Chapitre 4 : Database Tuning

Avec les slides de
© Dennis Shasha © Philippe Bonnet

Sarah Cohen-Boulakia
Laboratoire de Recherche en Informatique
Université Paris Sud
http://www.lIri.fr/~cohen/BD/BD.html

© Dennis Shasha © Philippe Bonnet

UNIVERSITE

PARIS
SUWD

Database Tuning

Database Tuning is the activity of making

a database ap
“More quick
throughput, t
response

olication run more quickly.
v” usually means higher

nough it may mean lower
time for time-critical

applications.

© Dennis Shasha © Philippe Bonnet

PARIS : - : :
SUD Tuning Principles Leitmotifs

Think globally, fix locally (does it matter?)
Partitioning breaks bottlenecks (temporal and
spatial)

Start-up costs are high; running costs are low (disk
transfer, cursors)

Be prepared for trade-offs (indexes and inserts)

© Dennis Shasha © Philippe Bonnet

™ UNIVERSITE Application Programmer (e.g., Business analyst, Data architect)

S PARIS

S Application

Sophisticated

Application™
Programmer Query Processor

(e.g., SAP admin)

Indexes

Storage Subsystem

DBA, _

Recover
Tuner Concurrency Control y

S Y

Operating System

A 2

Hardware
[Processor(s), Disk(s), Memory]

© Dennis Shasha © Philippe Bonnet

UNIVERSITE

S Part 1 : Index Tuning

* Index issues
— Indexes may be better or worse than scans

— Multi-table joins that run on for hours, because
the wrong indexes are defined

— Concurrency control bottlenecks
— Indexes that are maintained and never used

© Dennis Shasha © Philippe Bonnet

UNIVERSITE

I_, PARIS Index Implementations in some
major DBMS (change quickly!)

e SQL Server QOracle
— B+-Tree data structure — B+-tree, hash, bitmap, spatial
— Clustered indexes are sparse extender for R-Tree

— Indexes maintained as
updates/insertions/deletes
are performed

* DB2 e Clusters used when creating
— B+-Tree data structure, tables.

spatial extender for R-tree . TimesTen (Main-memory
— Clustered indexes are dense

DBMS
— Explicit command for index)
reorganization — T-tree

— clustered index

* Index organized table
(unique/clustered)

© Dennis Shasha © Philippe Bonnet

UNIVERSITE

PARIS
SUD B+-Tree Performance

e Key length is important!
— Choose small key when creating an index

— Key compression techniques in DBMS

e Prefix compression (Oracle 8, mySQL): only store that
part of the key that is needed to distinguish it from its
neighbors: Smi, Smo, Smy for Smith, Smoot, Smythe.

* Front compression (Oracle 5): adjacent keys have their
front portion factored out: Smi, (2)o, (2)y. There are
problems with this approach:

— Processor overhead for maintenance
— Locking Smoot requires locking Smith too.

© Dennis Shasha © Philippe Bonnet

UNIVERSITE

P PARIS Types of Queries

SUD
* Point Query + Range Query
SELECT balance SELECT number
FROM accounts FROM accounts
WHERE number = 1023; WHERE balance > 10000

, _ and balance <= 20000;
// Number is a primary key

* Prefix Match Query
 Multipoint Query SELECT *
SELECT balance FROM employees .
WHERE = 9* .
FROM accounts name ’
WHERE branchnum = 100;

// several matches
© Dennis Shasha © Philippe Bonnet

UNIVERSITE

SEE

Extremal Query
SELECT *
FROM accounts
WHERE balance =

(select max(balance) from
accounts)

Ordering Query

SELECT *
FROM accounts
ORDER BY balance;

© Dennis Shasha © Philippe Bonnet

More Types of Queries

Grouping Query
SELECT branchnum,
avg(balance)

FROM accounts
GROUP BY branchnum;

Join Query
SELECT distinct branch.adresse
FROM accounts, branch
WHERE
accounts.branchnum =
branch.number
and accounts.balance > 10000;

9

SPARIS ,
S B-Tree, Hash Tree, Bitmap

Range Queries Hash indexes don’t help
05 when evaluating range
0.4
03 gueries

o
N

o
=

o

Throughput (queries/sec)

LB

B-Tree Hash index Bitmap index o HaSh |ndeX Outpe rfOrmS

Point Queries B-tree on point queries

60

50

40

30

20
0 4

B-Tree hash index

Throughput(queries/sec)

© Dennis Shasha © Philippe Bonnet 10

SPAR'S Clustered Index

* Multipoint query that
returns 100 records out
of 1000 000 (0,01%).

MW clustered O nonclustered W no index

[EEN

o

* Clustered index is twice
as fast as non-clustered
index and orders of

— magnitude faster than a

SQLServer Oracle DB2
sCan.

o

~
l

Throughput ratio
o o o o

N
l

o

© Dennis Shasha © Philippe Bonnet 11

UNIVERSITE

B Covering Index - defined

Select name from employee where
department = “marketing”

Good covering index would be on
(department, name)

Index on (name, department) not useful.

Index on department alone moderately useful.

© Dennis Shasha © Philippe Bonnet

12

l UNIVERSITE

Covering Index - impact

SQLServer

S PARIS
70
8
® 60 - B covering
)]
£ 50
3 @ covering - not
3 40 ordered
5 30 A @ non clustering
o
< 20 .
S @ clustering
2 101
L
=04

© Dennis Shasha © Philippe Bonnet

Covering index performs
better than clustering index
when first attributes of
index are in the where
clause and last attributes in
the select.

When attributes are not in
order then performance is
much worse.

13

UNIVERSITE

SEE

Throughput (queries/sec)

—

——Sscan

R

—®-non clustering

o

5 10 15
%of selected records

20

25

© Dennis Shasha © Philippe Bonnet

Scan Can Sometimes Win

IBM DB2 v7.1 on Windows
2000

Range Query

If a query retrieves 10% of
the records or more,
scanning is often better
than using a non-clustering
non-covering index.
Crossover > 10% when
records are large or table is
fragmented on disk — scan
cost increases.

14

g UNIVERSITE

P 505" Part 2 : Schema tuning

e Normalisation & Denormalisation
* Vertical partitioning

15

UNIVERSITE

P RIS Denormalization

* Query: find all lineitems
whose supplier is in Europe.

 With a normalized schema
this query is a 4-way join.

* |f we denormalize lineitem
and add the name of the
region for each lineitem
(foreign key
denormalization)

o
o
o
[§]

0.0015

0.001 -

0.0005 A

Throughput (Queries/sec)

o
l

normalized denormalized

throughput improves 30%

© Dennis Shasha © Philippe Bonnet 16

UNIVERSITE

S Vertical Partitioning

e Consider account(id, balance, homeaddress)

* When might it be a good idea to do a “vertical
partitioning” into accountl(id,balance) and
account2(id,homeaddress)?

e Join vs. size.

© Dennis Shasha © Philippe Bonnet 17

UNIVERSITE

i Vertical Partitioning
Which design is better * The second schema might
depends on the query be better because the
pattern: relation (account_ID,
— The application that sends a balance) can be made
monthly statement is the smaller:

principal user of the address

— More account_ID, balance
of the owner of an account

pairs fit in memory, thus

— The balance is updated or increasing the hit ratio

examined several times a day. — A scan performs better

because there are fewer
pages.

© Dennis Shasha © Philippe Bonnet 18

UNIVERSITE

PARIS . . .
SUD Tuning Normalization

* Asingle normalized relation XYZ is better than two
normalized relations XY and XZ if the single relation
design allows queries to access X, Y and Z together
without requiring a join.

 The two-relation design is better iff:

— Users access tend to partition between the two sets Y and
Z most of the time

— Attributes Y or Z have large values

© Dennis Shasha © Philippe Bonnet 19

@ UNIVERSITE

P S Part 3 : Query Tuning

* Query optimisation
—EXPLAIN ANALYSE

* Query rewriting

© Dennis Shasha © Philippe Bonnet

20

<

UNIVERSITE

R Query Tuning

SELECT s.RESTAURANT _NAME, t.TABLE_SEATING, to_char(t.DATE_TIME,'Dy, Mon FMDD') AS THEDATE, to_char(t.DATE_TIME,'HH:MI PM')
AS THETIME, to_char(t.DISCOUNT,'99') | | '%' AS AMOUNTVALUE,t.TABLE_ID, s.SUPPLIER_ID, t.DATE_TIME,
to_number(to_char(t.DATE_TIME,'SSSSS')) AS SORTTIME

FROM TABLES_AVAILABLE t, SUPPLIER_INFO's,

WHERE

(SELECT s.SUPPLIER_ID, t. TABLE_SEATING, t.DATE_TIME, max(t.DISCOUNT) AMOUNT, t.OFFER_TYPE
FROM TABLES_AVAILABLE t, SUPPLIER_INFO
WHERE t.SUPPLIER_ID = s.SUPPLIER_ID
and (TO_CHAR(t.DATE_TIME, 'MM/DD/YYYY') 1=
TO_CHAR(sysdate, 'MM/DD/YYYY') OR TO_NUMBER(TO_CHAR(sysdate, 'SSSSS')) < s.NOTIFICATION_TIME - s.TZ_OFFSET)
and t.NUM_OFFERS >0
and t.DATE_TIME > SYSDATE
and s.CITY = 'SF'
and t.TABLE_SEATING ='2'
and t.DATE_TIME between sysdate and (sysdate + 7)

nd to_number(to_char(t.DATE_TIME, 'SSSSS')) between 39600 and 82800 . .
nd LOFFER_TYPE = ‘Discount’ . Execution is too slow ...
GROUP BY
s.SUPPLIER_ID, t.TABLE_SEATING, t.DATE_TIME, t.OFFER_TYP
" 1) How is this query executed?
t.SUPPLIER_ID =s.SUPPLIER_ID 1
and u.SUPPLIER_ID =s.SUPPLIER_ID 2) How to make it run faster?

and t.SUPPLIER_ID = u.SUPPLIER_ID
and t.TABLE_SEATING = u.TABLE_SEATING
and t.DATE_TIME = u.DATE_TIME

and t.DISCOUNT = u.AMOUNT
and t.OFFER_TYPE =u.OFFER_TYPE
and (TO_CHAR(t.DATE_TIME, '"MM/DD/YYYY') I=

TO_CHAR(sysdate, 'MM/DD/YYYY') OR
TO_NUMBER(TO_CHAR(sysdate, 'SSSSS')) < s.NOTIFICATION_TIME - s.TZ_OFFSET)

and t.NUM_OFFERS >

and t.DATE_TIME > SYSDATE and s.CITY = 'SF' and t.TABLE_SEATING = '2' and t.DATE_TIME between sysdate and (sysdate + 7) and
to_number(to_char(t.DATE_TIME, 'SSSSS')) between 39600 and 82800 and t.OFFER_TYPE = 'Discount’

ORDER BY AMOUNTVALUE DESC, t.TABLE_SEATING ASC, upper(s.RESTAURANT_NAME) ASC,SORTTIME ASC, t.DATE_TIME ASC

© Dennis Shasha © Philippe Bonnet -

S PARIS :
P 05 Query Execution Plan

Output of the Oracle EXPLAIN tool

Execution Plan

SELECT STATEMENT Optimizer=CHOOSE (Cost=165 Card=1 Bytes=106)

0 FORTIORBERBYINEGS-165 Card=1 Bytes=106)

I NESTED LOOPS (Cost=164 Card=1 Bytes=106) _
2 -t=155 Card=1 Bytes=83)

3 TABLE ACCESS (FULL) OF 'TABLES_AVAILABLE' (Cost=72 Card=1 Bytes=28)
3 VIEW

5 SORT (GROUP BY) (Cost=83 Card=1 Bytes=34)

6 NESTED LOOPS (Cost=81 Card=1 Bytes=34)
7

7

TIABLE ACCESS (FULL) OF 'TABLES_AVAILABLE' (Cost=72 Card=1 Bytes=24)

TABLE ACCESS (FULL) OF 'SUPPLIER_INFO’ (Cost=9 ard=20 Byies=200)

10 2 TABLE ACCESS (FULL) OF 'SUPPLIER_INFO' (Cost=9 Card=20 Bytes=460)

Access Method 2
© Dennis Shasha © Philippe Bonnet

UNIVERSITE

P RIS Physical Operators

e Query Blocks * Algorithms
— One block per SELECT- — Sort
FROM-WHERE- — Aggregates
GROUPBY-ORDERBY _ Select
— VIEW isolate blocks — Project
optimized separately _ Join
* Shape of the * Nested Loop
execution tree (right- * Sort-Merge
deep, bushy, ...) * Hash-Join

e Join order

© Dennis Shasha © Philippe Bonnet 23

UNIVERSITE

B Access Method

e Table Scan (full scan)
* [ndex Scan

— Find Index(es) matching expression in query
— Extract constant or range from query
— Index Search

© Dennis Shasha © Philippe Bonnet

24

SPAR'S Cost Model

e Cost metric
— Cost =w1*I0_COST

+w2*CPU_COST
._‘_. — We consider w2 =0
e Cost formula for each

operator
— Depends on operator algorithm

— Depends on input size (nb
tuples, nb pages)
e Because operators are

composed. Need to estimate
size of operator output.

© Dennis Shasha © Philippe Bonnet

25

UNIVERSITE

S PARIS

* Query Tree

Tfsname(On-the-fIy)

B> (Sort-Merge Join)

sid=sid
Scan:; o Scan:;
\(/vrite to CTbi =100 ratjng > 5 \(/vrlte to
temp T1) T temp T2)
Reserves Sailors

© Dennis Shasha © Philippe Bonnet

U5 Query Representation

 Query graph

bid=100

Reserves

sid=sid

Sailors

rating > 5

26

UNIVERSITE

PARIS .
SUD Query Representation

* A query is decomposed into blocks
— Aggregation
— Order by
— SPJ
— Relations

* Each block is represented and optimized
independently

© Dennis Shasha © Philippe Bonnet

27

UNIVERSITE

PARIS _ o
SW Overview of Query Optimization

* |deally: Want to find best plan.
* Practically: Avoid worst plans!

* Two main issues:
— For a given query, what is the search space?
— How is the search implemented?

» Algorithm to search plan space for cheapest (estimated) plan.
- How is the cost of a plan estimated?

© Dennis Shasha © Philippe Bonnet

UNIVERSITE

U3 Search Algorithm

Naivel
— Enumerate all possible plans (o(n!))

— Pick the best plan
— Intractable

Naive 2
— Order of relations fixed by the query
— Selections are pushed
* No further transformations

— Single multiway nested loop join for each block
* Index used if they exist
* Star tree

© Dennis Shasha © Philippe Bonnet

q UNIVERSITE
P 505 Search Algorithm

Semi-Naive

— Order of relations fixed by the query
— Selections are pushed

e No further transformations

— Nested loop vs. sort merge join
— Left-deep tree

Implementation problems:
e expressions reference columns of tables
e expressions must be adapted to the position of tables
in the tree (including interm. tables)

© Dennis Shasha © Philippe Bonnet

30

@ UNIVERSITE

* Query optimisation
—EXPLAIN, ANALYSE

* Query rewriting

© Dennis Shasha © Philippe Bonnet

31

UNIVERSITE

0> Query Rewriting

The first tuning method to try is the one
whose effects are purely local

— Adding an index, changing the schema, modifying
transactions have global effects that are
potentially harmful

— Query rewriting only impacts a particular query

© Dennis Shasha © Philippe Bonnet

UNIVERSITE

PARIS . s .

s Query Rewriting Techniques
* Index usage

* DISTINCTs elimination

e (Correlated) subqueries

* Use of temporaries (no query in the FROM
clause!)

* Join conditions

e Use of Having

e Use of views

* Materialized views.

© Dennis Shasha © Philippe Bonnet

UNIVERSITE

P S5’ Running Example

* Employee(ssnum, name, manager, dept, salary,
numfriends)
— Clustering index on ssnum
— Non clustering indexes (i) on name and (ii) on dept
— Ssnum determines all the other attributes

e Student(ssnum, name, degree_sought, year)
— Clustering index on ssnum
— Non clustering index on name
— Ssnum determines all the other attributes
* Tech(dept, manager, location)
— Clustering index on dept; dept is primary key.

© Dennis Shasha © Philippe Bonnet

34

@™ UNIVERSITE
N PARIS
P 205 Index Usage
 Many query optimizers will not use indexes in
the presence of:
— Arithmetic expressions
WHERE salary/12 >= 4000;

— Substring expressions

SELECT * FROM employee
WHERE SUBSTR(nhame, 1, 1) = ‘G’;

— Numerical comparisons of fields with different types

— Comparison with NULL.

© Dennis Shasha © Philippe Bonnet 35

UNIVERSITE

P 25%1S Eliminate unneeded DISTINCTs

 Query: Find employees who work in the information
systems department. There should be no duplicates.

SELECT distinct ssnum
FROM employee
WHERE dept = ‘information systems’

e Distinct needed ?

© Dennis Shasha © Philippe Bonnet 36

UNIVERSITE

s Eliminate unneeded DISTINCTs

* Query: Find social security numbers of
employees in the technical departments.

There should be no duplicates.

SELECT DISTINCT ssnum
FROM employee, tech
WHERE employee.dept = tech.dept

e |s DISTINCT needed?

© Dennis Shasha © Philippe Bonnet 37

S

UNIVERSITE

PARIS

© Dennis Shasha © Philippe Bonnet

38

UNIVERSITE

PARIS .
SW Reaching

* The relationship among DISTINCT, keys and joins
can be generalized:

— Call a table T privileged if the fields returned by the
SELECT containa key of T

— Let R be an unprivileged table. Suppose that R is joined
on equality by its key field to some other table S, then
we say R reaches S.

— Now, define reaches to be transitive. So, if R1 reaches
R2 and R2 reaches R3 then say that R1 reaches R3.

© Dennis Shasha © Philippe Bonnet

UNIVERSITE

N PARIS .
S Reaches: Main Theorem

* There will be no duplicates among the records
returned by a selection, even in the absence
of DISTINCT if one of the two following
conditions hold:

— Every table mentioned in the FROM clause is
privileged

— Every unprivileged table reaches at least one
privileged table.

© Dennis Shasha © Philippe Bonnet 40

@™ UNIVERSITE

Reaches: Example 1

SELECT ?DISTINCT? ssnum
FROM employee, tech
WHERE employee.manager = tech.manager

© Dennis Shasha © Philippe Bonnet

41

g UNIVERSITE

P\ Epu\ge 15

Reaches: Example 2

SELECT ?DISTINCT? ssnum, tech.dept
FROM employee, tech
WHERE employee.manager = tech.manager

© Dennis Shasha © Philippe Bonnet

42

UNIVERSITE

PARIS
SUWD

Reaches: Example 3

SELECT student.ssnum

FROM student, employee, tech

WHERE student.name = employee.name
AND employee.dept = tech.dept;

© Dennis Shasha © Philippe Bonnet

43

UNIVERSITE

PARIS .
SW Rewriting of Uncorrelated

Subqueries without Aggregates

SELECT ssnum

1. Combine the
FROM employee

arguments of the WHERE dept in (select dept
two FROM clauses from tech)

2. AND together the becomes
where clauses, SELECT ssnum
replacing in by — FROM employee, tech

WHERE employee.dept =

3. Retain the SELECT tech.dept
clause from the
outer block NB: one dept per employee

“__u

(possible iff “in” meant “=

© Dennis Shasha © Philippe Bonnet .

UNIVERSITE

PARIS .
SW Abuse of Temporaries

 Query: Find all information department
employees with their locations who earn at least
$10,000.

— INSERT INTO temp
SELECT *

FROM employee
WHERE salary >= 10000

— SELECT ssnum, location
FROM temp
WHERE temp.dept = ‘information systems’

Or same idea with temp in the FROM clause

e Selections should have been done in reverse
order. Temporary relation blinded the optimizer.

UNIVERSITE

PARIS . -
SUD Join Conditions

* |[tis agood idea to express join conditions
on clustering indexes.
— No sorting for sort-merge.
— Speed up for multipoint access using an

indexed nested loop.

* [tis a goodidea to express join conditions
on numerical attributes rather than on
string attributes.

© Dennis Shasha © Philippe Bonnet

' UNIVERSITE

S PARIS :
S5 Use of Having

e Don’t use HAVING when WHERE

is enough!

* Having should be
— SELECT avg(salary) as avgsalary,

reserved for aggregate

dept
FROM employee properties of the
GROUP BY dept groups.

HAVING dept = ‘information systems’;
— SELECT avg(salary) as

avgsalary, dept
4 FROM employee
ept GROUP BY dept

FROM employee | HAVING count(ssnum) > 100;
WHERE dept= ‘information systems’

GROUP BY dept;

— SELECT avg(salary) as avgsalary,

© Dennis Shasha © Philippe Bonnet v

g e Tuning Queries and Views

LD (Conclusion)

e If a queryruns slower than expected, check if an index needs to
be re-built or if statistics are too old (= ANALYSE).

 Sometimes, the DBMS may not be executing the plan you had
in mind. Common areas of weakness:

— Selections involving null values
— Selections involving arithmetic or string expressions
— Selections involving OR conditions

— Lack of evaluation features like index-only strategies or certain join
methods or poor size estimation

* Check the plan that is being used! Then adjust the choice of
indexes or rewrite the query/view

—> EXPLAIN
—> EXPLAIN ANALYSE

© Dennis Shasha © Philippe Bonnet 48

